A Linear Non-Gaussian Acyclic Model for Causal Discovery
نویسندگان
چکیده
In recent years, several methods have been proposed for the discovery of causal structure from non-experimental data. Such methods make various assumptions on the data generating process to facilitate its identification from purely observational data. Continuing this line of research, we show how to discover the complete causal structure of continuous-valued data, under the assumptions that (a) the data generating process is linear, (b) there are no unobserved confounders, and (c) disturbance variables have non-Gaussian distributions of non-zero variances. The solution relies on the use of the statistical method known as independent component analysis, and does not require any pre-specified time-ordering of the variables. We provide a complete Matlab package for performing this LiNGAM analysis (short for Linear Non-Gaussian Acyclic Model), and demonstrate the effectiveness of the method using artificially generated data and real-world data.
منابع مشابه
Estimation of linear non-Gaussian acyclic models for latent factors
Many methods have been proposed for discovery of causal relations among observed variables. But one often wants to discover causal relations among latent factors rather than observed variables. Some methods have been proposed to estimate linear acyclic models for latent factors that are measured by observed variables. However, most of the methods use data covariance structure alone for model id...
متن کاملCombining Linear Non-Gaussian Acyclic Model with Logistic Regression Model for Estimating Causal Structure from Mixed Continuous and Discrete Data
Estimating causal models from observational data is a crucial task in data analysis. For continuousvalued data, Shimizu et al. have proposed a linear acyclic non-Gaussian model to understand the data generating process, and have shown that their model is identifiable when the number of data is sufficiently large. However, situations in which continuous and discrete variables coexist in the same...
متن کاملBayesian Discovery of Linear Acyclic Causal Models
Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-...
متن کاملDiscovery of Non-gaussian Linear Causal Models using ICA
In recent years, several methods have been proposed for the discovery of causal structure from non-experimental data (Spirtes et al. 2000; Pearl 2000). Such methods make various assumptions on the data generating process to facilitate its identification from purely observational data. Continuing this line of research, we show how to discover the complete causal structure of continuous-valued da...
متن کاملDiscovering Cyclic and Acyclic Causal Models by Independent Components Analysis
We generalize Shimizu et al’s (2006) ICA-based approach for discovering linear non-Gaussian acyclic (LiNGAM) Structural Equation Models (SEMs) from causally sufficient, continuous-valued observational data. By relaxing the assumption that the generating SEM’s graph is acyclic, we solve the more general problem of linear non-Gaussian (LiNG) SEM discovery. In the large sample limit, LiNG discover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 7 شماره
صفحات -
تاریخ انتشار 2006